Dendritic calcium spikes in layer 5 pyramidal neurons amplify and limit transmission of ligand-gated dendritic current to soma.
نویسندگان
چکیده
Long-lasting, dendritic, Ca(2+)-dependent action potentials (plateaus) were investigated in layer 5 pyramidal neurons from rat neocortical slices visualized by infrared-differential interference contrast microscopy to understand the role of dendritic Ca(2+) spikes in the integration of synaptic input. Focal glutamate iontophoresis on visualized dendrites caused soma firing rate to increase linearly with iontophoretic current until dendritic Ca(2+) responses caused a jump in firing rate. Increases in iontophoretic current caused no further increase in somatic firing rate. This limitation of firing rate resulted from the inability of increased glutamate to change evoked plateau amplitude. Similar nonlinear patterns of soma firing were evoked by focal iontophoresis on the distal apical, oblique, and basal dendrites, whereas iontophoresis on the soma and proximal apical dendrite only evoked a linear increase in firing rate as a function of iontophoretic current without plateaus. Plateau amplitude recorded in the soma decreased as the site of iontophoresis was moved farther from the soma, consistent with decremental propagation of the plateau to the soma. Currents arriving at the soma summed if plateaus were evoked on separate dendrites or if subthreshold responses were evoked from sites on the same dendrite. If plateaus were evoked at two sites on the same dendrite, only the proximal plateau was seen at the soma. Just-subthreshold depolarizations at two sites on the same dendrite could sum to evoke a plateau at the proximal site. We conclude that the plateaus prevent current from ligand-gated channels distal to the plateau-generating region from reaching the soma and directly influencing firing rate. The implications of plateau properties for synaptic integration are discussed.
منابع مشابه
Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons.
Layer 2/3 (L2/3) pyramidal neurons are the most abundant cells of the neocortex. Despite their key position in the cortical microcircuit, synaptic integration in dendrites of L2/3 neurons is far less understood than in L5 pyramidal cell dendrites, mainly because of the difficulties in obtaining electrical recordings from thin dendrites. Here we directly measured passive and active properties of...
متن کاملAction potential initiation and propagation in layer 5 pyramidal neurons of the rat prefrontal cortex: absence of dopamine modulation.
Somatic and dendritic whole-cell recording was used to examine action potential (AP) initiation and propagation in layer 5 pyramidal neurons of the rat prelimbic prefrontal cortex. APs generated by somatic current injection, or via antidromic stimulation, were reliably recorded at apical dendritic locations as far as 480 microm from the soma. Although the backpropagation of single APs into the ...
متن کاملDendritic properties of turtle pyramidal neurons.
The six-layered mammalian neocortex evolved from the three-layered paleocortex, which is retained in present-day reptiles such as the turtle. Thus the turtle offers an opportunity to examine which cellular and circuit properties are fundamental to cortical function. We characterized the dendritic properties of pyramidal neurons in different cortical regions of mature turtles, Pseudemys scripta ...
متن کاملTop-down dendritic input increases the gain of layer 5 pyramidal neurons.
The cerebral cortex is organized so that an important component of feedback input from higher to lower cortical areas arrives at the distal apical tufts of pyramidal neurons. Yet, distal inputs are predicted to have much less impact on firing than proximal inputs. Here we show that even weak asynchronous dendritic input to the distal tuft region can significantly increase the gain of layer 5 py...
متن کاملContribution of extrasynaptic N-methyl-D-aspartate and adenosine A1 receptors in the generation of dendritic glutamate-mediated plateau potentials.
Thin basal dendrites can strongly influence neuronal output via generation of dendritic spikes. It was recently postulated that glial processes actively support dendritic spikes by either ceasing glutamate uptake or by actively releasing glutamate and adenosine triphosphate (ATP). We used calcium imaging to study the role of NR2C/D-containing N-methyl-d-aspartate (NMDA) receptors and adenosine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 86 1 شماره
صفحات -
تاریخ انتشار 2001